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Abstract

We seek to determine if real-networks can accurately be represented by random graph

models. To accomplish this task, we use a combination of three commonly-used random

graph models: geometric, Chung-Lu, and preferential attachment. Each of these three mod-

els has unique properties that helps model certain characteristics of real-world networks, but

using these random graph models individually has proven fruitless. Therefore, we combine

multiple models in order to get a model that more accurately reflects these networks. Our

method for determining if our combination random graph model successfully represents a

real-world network consists of three main tests: edge counts, degree distributions, and tri-

angle counts. This developed algorithm supports the idea that random graph models have

potential in modeling real-world networks, and its output is further supported by statistical

tests we develop. Although we find some faults in our method, it shows significant potential.

We achieved some success with organically produced real-world networks like human and

animal social networks and terrorist cells. However, we hypothesize that our model can be

improved by adding more random graph models and testing it on larger networks.

Keywords: graph theory, network science, social networks, random graphs, Chung-Lu

model, geometric model, preferential attachment model.
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1 Terminology

• G: fixed simple graph, consisting of vertices and non-directed edges, where an edge

is an unordered pair {vi, vj}. We will use the notation used in Chung-Lu, vi ∼ vj, to

denote an edge between vi and vj [6]. Specifically, we will consider finite, undirected

graphs with no loops, unless stated otherwise.

• V (G): vertices of G.

• E(G): Edges of G.

• n: number of vertices in a graph.

• deg(v): The degree of a vertex v in G is defined as the total number of edges incident

to v. The total degree of G is defined as the sum of each vertex’s individual degree,∑
v∈G deg(v).

• d(G): degree distribution vector of G.

• d̂(G): the sorted degree distribution vector of G. The sorted degree distribution lists

the degrees of the vertices of G sorted in descending order. We will let d̂(G) be a vector

of length n, where the i-th entry is the i-th highest degree among the vertices of G.

• e(G): edge count of G or the total number of edges in G. The Handshake Lemma

states that for undirected simple graphs, the number of degrees is twice the number of

edges. Thus,

e(G) =

∑
v∈G deg(v)

2
[16].

• triangle: a set of three distinct vertices, {v1, v2, v3} ⊆ V (G) that are all mutually

adjacent to one another.

• Δ(G): triangle count of G or the total number of unordered triangles found in G. A

different ordering of vertices does not constitute a different triangle.
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• We approximate several functions in the below sections. Specifically, we say f(x) ≈
g(x) if

lim
x→∞

f(x)

g(x)
= 1

or if,

lim
x→0

f(x)

g(x)
= 1.

2 Introduction

A “proverb” in network science is that most “real-world” networks are power-law graphs. A

graph obeys the power law if the number of vertices with degree k is proportional to k−β,

where β ≥ 1 [6]. Perhaps surprisingly, a recent study of Broido and Clauset found that for a

large database of graphs, this proverb, in fact, is not true: only approximately 4% of graphs

obey a power-law distribution [5]. There are many processes that generate power-law graphs

including preferential attachment [3], hierarchical models [15] and weighted random graphs

[6]. One common motif among these processes is that the richer get richer or the popular

get more popular. Nonetheless, what if there is some truth behind the idea that real-world

networks can be modeled using random graph models? More specifically, it could be the

case that the same parameters responsible for generating power-law real-world networks are

partly responsible for generating other realized networks. For instance, the distribution of

words in a language appears to obey the power-law up to a point; after which, other forces

appear to take over [4]. We hypothesize that random graph models can in fact represent

real-world networks if we combine several models.

In the world of graph theory, there are a lot of ways to define sameness or similarity in

graphs. Graphs are often considered the same if they are isomorphic, or there exists some

function that can re-order the vertices of one graph so that it is identical to another. How-

ever, producing a random graph that is isomorphic to a fixed graph is highly improbable. In

fact, even if two random graphs have the same input parameters, achieving an isomorphic
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relationship is difficult. Nonetheless, two randomly generated graphs produced using the

same process typically have similar characteristics (i.e. edge counts and triangle counts) [1].

Therefore, by combining three known random graph models, Gw (or Chung-Lu), geometric,

and preferential attachment, we aim to produce a random graph model that can more accu-

rately produce graphs with the same size and similar characteristics of a given network. The

challenge here is modeling fixed networks using only three input parameters. Specifically,

using three main tests we develop an algorithm to determine if a random graph is similar

to a fixed graph, and then test this algorithm on a library of fixed networks. Additionally,

we provide a mathematical proof that this algorithm works precisely under mild conditions

(Theorems 6.4 and 6.5).

3 Random Graph Models

Formally, we say a random graph model is a random variable that maps from a sample space,

S, to a set of possible graphs, R, with specific input parameters, or

RGM : S → R,

where RGM is a random graph model. The sample space S is a collection of possible

outcomes each with an assigned probability. A random variable is a function mapping from

the collection of possible outcomes to another set. In the case of the random graph model, we

take the sample space as [0, 1]k for sufficiently large k assigned with usual uniform probability.

We then view the random graph model as an interpretation of the point [0, 1]k to turn edges

on and off, place vertices, and determine other qualities in the building of the graph. We

want to know specific qualities about random graph models, including probability of an edge,

edge counts, triangle counts, and degree distributions. These values are random variables

as well, mapping from the collection of all possible R ∈ R with defined input parameters to
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the real numbers, or

X : R → R,

where X is the characteristic of R we wish to find. If we combine these two random variables

we get

X(RGM) : S → R,

where X(RGM) represents a specific characteristic of the random graph model.

This precise definition of a random graph is not needed to understand the remainder of

the project, but is necessary for mathematical completeness.

Additionally, we often take the expectation of these characteristics using both mathe-

matical formulas and experimental averages. One important property of expectation that

we utilize is linearity of expectation or

E{aX + bY } = aE{X}+ bE{Y }[7],

where a, b ∈ R and X and Y are real valued random variables.

3.1 Random Geometric Graphs

The geometric random graph model or Gn,r has been studied in depth by Mathew Penrose

[14]. The model is simple, but extremely valuable in the study of random graphs because

edges are created based on proximity. We build our graph by randomly placing n vertices

in the unit square and connect the vertices based on the input parameter r or radius, where

0 ≤ r ≤ √
2. We form an edge between a pair of vertices in the unit square {i, j} if they are

less than or equal to a distance r apart.

Theorem 3.1. For a pair of vertices {i, j} ∈ V (R) generated using the random geometric
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model with parameters n and r,

πr2(1− 4r + 4r2) ≤ Pr(i ∼ j) ≤ πr2,

where Pr(i ∼ j) represents the probability of an edge between {i, j}. For sufficiently small

r, Pr(i ∼ j) ≈ πr2 [14]. That is,

lim
r→0

Pr(i ∼ j)

πr2
= 1

Proof. Place a square with side length 1− 2r within the unit square so that each side of the

square is exactly r distance away from the edge of the unit square. Notice that this square

has area (1−2r)2 = (1−4r+4r2). The probability of a vertex falling within this sub-square

is equal to the area of the sub-square divided by the area of the unit square. Since the area

of the unit square is 1, the probability that a vertex falls within this square is (1− 4r+4r2).

The probability that an arbitrary vertex i falls within the sub-square and another arbitrary

vertex j falls distance r from vertex i is equal to the probability of i landing in sub-square

multiplied by the area of the circle with center i and radius r. Thus,

Pr(i ∼ j) ≥ πr2(1− 4r + 4r2)

If we assume that an arbitrary vertex i can fall outside of the sub-square and still have

probability of πr2 of another vertex j landing distance r from it, then the upper-bound

follows. Since i can land anywhere in the unit square Pr(i ∼ j) ≤ πr2. Thus,

πr2(1− 4r + 4r2) ≤ Pr(i ∼ j) ≤ πr2.

Note: the lower bound of this inequality approaches πr2 as r goes to zero. It is worth
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mentioning that this the lower bound can be improved by considering specific areas of partial

circles near the edge of the square; however, for our application, this precision is not needed.

Also, since the r values in the Gn,r model are often sufficiently small, it has become common

practice in random graph theory to use πr2 as a sufficient approximation.

Likewise, the expected number of edges can be approximated the same way,

E{e(R)} ≈ πr2
(
n

2

)
[14].

The proof of this formula can be found in Section 6. The expected number of edges is

important for our algorithm described in Section 4. An example of a geometric graph

with input parameters n = 15 and r = 0.3 is pictured below. Note that based on the

proof of Theorem 3.1, r = 0.3 is not sufficiently small enough to use the approximation

P (i ∼ j) = πr2. However, we use it for ease of presentation in the figure below.

Figure 1: Geometric Random Graph

Because edges are determined by proximity, the likelihood of cliques, complete sub-

graphs, is high in the geometric model. We can use the geometric model to help simulate a

fixed real-world network with several cliques. In our algorithm found in Section 4, we use

the number of triangles (three vertex clique) as a method for examining our model.
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3.2 Gw, Chung-Lu model

The Chung-Lu model first introduced in [6] has a single input parameter: a vector w, where

the values of w are non-negative real numbers. In strict terms, the values in the vector w

are the explicit expected degree of each individual vertex if you allow for self-loops (a vertex

can form an edge with itself). When self-loops are allowed, the self-loop only counts as one

edge toward the degree of that vertex. For our combination model, we do not wish to use

self-loops; however, in most cases, the total number of self-loops is small compared to the

total number of edges. Hence in our model, each individual entry of w is approximately the

expected degree contributed by the Chung-Lu model of individual vertices. This result will

be proven below.

Given w, where

w2
max :=

(
max

k
wk

)2

≤
n∑

k=1

wk, [6]

a Gw random graph is generated as follows: For each pair of vertices {i, j} place an edge

i ∼ j with probability

Pr(i ∼ j) =
wiwj
n∑

k=1

wk

, [6]

where each edge is placed independently of all the others. Notice that if w is a constant

vector then Pr(i ∼ j) becomes a constant by the above formula. When this occurs, we

say the random graph was generated by the Gn,p or Erdös-Renyi model, where there are n

vertices and a fixed p probability of an edge between any two vertices. We will use the Gn,p

or Erdős-Renyi model in Section 6.

Theorem 3.2. For a random graph R generated using the Chung-Lu model with parameter

w, the expected edge count obeys the following formula:

E{e(R)} =

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
=

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) (
n

2

)
.
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Additionally,

E{e(R)} =
n∑

i=1

wi

2
=

n∑
i=1

wi

2
(
n
2

)(n
2

)
,

if self-loops are permitted.

Proof. Fix i as an arbitrary vertex in R generated by the Gw model with a fixed w.

For each j ∈ V (G) define,

γi,j =

⎧⎪⎪⎨
⎪⎪⎩
1 if edge between i and j

0 if no edge between i and j

,

where j is an arbitrary vertex in the Gw graph. It follows that

E{deg(i)} = E{
n∑

j=1
i �=j

{γi,j}}.

By the linearity of expectation,

E{deg(i)} =
n∑

j=1
i �=j

E{γi,j}.

By the definition of Pr(i ∼ j),

E{γi,j} = Pr(i ∼ j).

Thus,

E{deg(i)} =
n∑

j=1
i �=j

Pr(i ∼ j) =
n∑

j=1
i �=j

wiwj
n∑

k=1

wk

.

Notice,

E{deg(R)} =
n∑

i=1

E{deg(i)}.
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Therefore,

E{deg(R)} =
n∑

i=1
j=1
i �=j

wiwj
n∑

k=1

wk

.

By the Handshake Lemma,

E{e(R)} =

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
=

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) (
n

2

)
.

If we allow for self-loops, the condition that i 
= j in the summation goes away. Therefore,

factoring out wi we get,

E{deg(i)} =
n∑

j=1

wiwj
n∑
k

wk

= wi

⎛
⎜⎜⎜⎜⎝

n∑
j=1

wj

n∑
k=1

wk

⎞
⎟⎟⎟⎟⎠ = wi.

Therefore,

E{deg(R)} =
n∑

i=1

wi.

Thus by the Handshake Lemma,

E{e(R)} =
n∑

i=1

wi

2
=

n∑
i=1

wi

2
(
n
2

)(n
2

)
.

It is worth remarking that the number of edges between the case of Gw with self-loops

and the case without self-loops differs in expectation by

∑
i w

2
i∑

k wk

.

In our model, we use the sorted degree distribution vectors of the fixed network G as

our w for the random graph, R. Even though the w vector is sorted, each individual
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entry still represents the approximate expected degree of that vertex as seen by Theorem

3.2. However, we often have to scale down the maximum values of the degree distribution

vectors in order to get a w that meets the necessary condition, w2
max ≤

n∑
k=1

wk. The main

advantage of the Chung-Lu model is that a particular degree sequence can be prescribed

and independence still holds. The Gw model pictured below has parameters: n = 15 and

w = [5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1].

Figure 2: Gw Random Graph

Notice that the expected degree for each vertex, vi, is approximately its corresponding

value wi in the vector w. It is important to remember that we are not inputting the exact

degree values but rather weights that factor into the probability of an edge.

3.3 Preferential Attachment

The preferential attachment model is an example of an exponential random graph model

and is often referred to as the “rich get richer” model. We use Herbert Simon’s preferential

attachment model of two input parameters, n and k, where n is the number of vertices in

the graph and k is the number of edges added at each step [6]. The graph generation process

starts with a clique of size k (i.e., k vertices all pair-wise adjacent) and then proceeds to add

a vertex. At each step, the added vertex makes k connections to the existing graph based

on the existing degrees of the graph. This process is repeated until there are n vertices in
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the graph. The newly added vertex i will form an edge with an already present vertex, j,

with probability

Pr(i ∼ j) =
deg(j)∑

j,i �=j

deg(j)
,

where deg(j) represents the degree of an existing vertex j in the random graph R. This

process is iterative. At each step the Pr(i ∼ j) changes because the size and total degree of

the graph has changed. If k > 1, we use the above formula to assign an edge, but if i forms

an edge with j with the first of k edges added at that step, the following k edges cannot

duplicate that edge. That is k, distinct edges must form at each step.

Theorem 3.3. The expected number of edges for the Preferential Attachment model with

parameters k and n follows the below formula:

E{e(R)} = k(n− 1) =
2k

n

(
n

2

)
.

Proof. By definition, there are k edges added at each step of the Preferential Attachment

process. Since there are (n− 1) steps, it follows that

E{e(R)} = k(n− 1).

Therefore,

E{e(R)} =
2kn(n− 1)

2n
. =

(2k
n

)(n(n− 1)

2

)
=

(2k
n

)( n!

2!(n− 2)!

)

Thus, by definition of the binomial coefficient,

E{e(R)} = k(n− 1) =
2k

n

(
n

2

)
.
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Note: Our construction of the preferential attachment model occasionally duplicates

edges, but this does not effect the results enough to merit any additional proofs.

An example of a preferential attachment graph with parameters n = 15 and k = 1 is

pictured in the figure below.

Figure 3: Preferential Attachment Random Graph

If k = 1, the model will form a tree as seen above. The advantage of preferential

attachment is the development of a central hub of high degree [6].

3.4 Our Combination Model

The geometric, Gw, and preferential attachment models all have valuable characteristics

that are visible in real world networks, so rather than attempt to model real world networks

with a single random graph model, we chose to use a combination of the three random

graphs. Essentially, this combination model uses the preferential attachment, geometric and

Gw models independently of one another to produce a unique random graph model with

parameters r, k, and w. The model begins by creating a preferential attachment graph

of n vertices using the inputted k parameter. After that preferential attachment graph is

created the vertices are randomly placed in the unit square. The model then adds edges to

the graph if either of the conditions for geometric or Gw are met. That is if a vertex j falls

within distance r of vertex i or based on the Pr(i ∼ j) formula for Gw with an inputted
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w. For emphasis, to maintain independence, the indices of w compared to the indices of the

preferential attachment process are random. It is important to note that if both conditions

are met, then only one edge is formed between i and j. Therefore, edges are drawn using all

three input parameters, k, r, and w, but only one needs to be satisfied for the edge to exist.

Theorem 3.4. The expected number of edges for our combination model with parameters n,

k, and w, all fixed, and sufficiently small r, has the following approximation:

E{e(R)} ≈
⎛
⎝πr2 +

2k

n
+

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)

−2k

n

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − 2k

n
πr2 +

2k

n
πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)
⎞
⎠(

n

2

)
.

Proof. Notice that the expected edge counts for each individual model are of the form:

p

(
n

2

)
,

where p is the probability or the average probability of an edge.

Note: the average probability refers to the preferential attachment model. Because the

probability of an edge changes at each step we average the probabilities as 2k
n
.

Therefore, we need to determine the probability of an edge in our combination model.

The probability of an edge for our model must be a linear combination of the three individual

probabilities. By the inclusion-exclusion principle we know,

(PrGeo ∪ PrPA ∪ PrGw) = PrGeo + PrPA + PrGw − (PrGeo ∩ PrGw)

−(PrPA ∩ PrGw)− (PrGeo ∩ PrPA) + (PrGeo ∩ PrPA ∩ PrGw),

where each of the above probabilities represent the probability of an edge for that particular
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model. Since the models determine edges independently of one another the formula simplifies,

PrTotal = PrGeo+PrPA+PrGw−(PrGeoPrGw)−(PrPAPrGw)−(PrGeoPrPA)+(PrGeoPrPAPrGw),

where PrTotal = (PrGeo ∪ PrPA ∪ PrGw). Therefore,

Prtotal ≈
⎛
⎝πr2 +

2k

n
+

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)

−2k

n

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − 2k

n
πr2 +

2k

n
πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)
⎞
⎠ ,

for sufficiently small r. Thus,

E{e(R)} ≈
⎛
⎝πr2 +

2k

n
+

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)

−2k

n

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

) − 2k

n
πr2 +

2k

n
πr2

∑n
i,j=1
i �=j

wiwj∑n
k=1 wk

2
(
n
2

)
⎞
⎠(

n

2

)
.

for sufficiently small r.

The reason the formula is an approximation is simply because we are using some of the

E{e(R)} approximations from the individual models. We have found that this formula is

more accurate for random graphs with large n and small r. An example of this model with

input parameters n = 15, k = 1, r = 0.2, and w = [5, 5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1] is

pictured below.
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Figure 4: Combination Model Random Graph

Using this new random graph model, we believe it is possible to accurately model a

multitude of real-world networks.

4 Solving the Inverse Problem

4.1 Problem Statement

Given a fixed graph G, we seek to find the most ideal k, w, and r in our combination model

that are best able to produce random graphs, R, like G. However, in order to simplify the

problem, we limited the broadness of these three parameters. We are testing only values

of k ∈ {0, 1, 2}. Additionally, we define w to be a fixed multiple of the degree distribution

vector of G. We define α ∈ [0, 1] as the coefficient of w. It might seem like we are using the

answer to find the answer. However, our studies have shown that not all distribution vectors

meet the requirements of w set out in Chung-Lu, so we have to modify the vector to meet

those criteria. Finally, we limit r ∈ [0, 1].

Therefore, a more accurate problem statement: Given a fixed graph G, we seek to find

the most ideal k ∈ {0, 1, 2}, α ∈ [0, 1], and r ∈ [0, 1] in our model that are best able to

produce random graphs, R, like G. The difficulty in this objective is determining how to

measure similarity. Because our model is by definition random, we face the impractical task
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of comparing a set of random graphs to a fixed network. However, despite the randomness

of the individual graphs, when the whole of these individual graphs is examined we find

common characteristics. Consequently, our goal is not to find the graph that most closely

represents the fixed graph G. If that were the case, we would simply choose a unique fixed

graph to model G. Instead, our goal is to determine if the underlying structure of real

world networks can be described using random graph models. In order to do this we must

determine how we will measure success, which will be discussed in the following subsection.

4.1.1 Overview

Our process for determining whether random graphs can successfully represent real-world

networks begins with determining our measures of success. We then vary the input param-

eters of our combination model until we find a set of input parameters that best represents

the fixed graph based on the measures of success.

4.1.2 Measures

Before we begin in detailing our process for solving the problem statement, we must define

the measures used to determine success. Comparing a fixed graph to a random graph and

determining similarity is a difficult task, and the ultimate measure of closeness is not agreed

upon. Therefore, we decided to use three main measures of success.

• Edge%:

Edge% =
|E{e(R)} − e(G)|

e(G)
.

This formula represents the relative error between the expected edge count of an indi-

vidual random graph, R and the actual number of edges in the fixed graph G.

• Trig%:

Trig% =
|Δ(R)−Δ(G)|

Δ(G)
.
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Similar to the formula for Edge%, this formula represents the relative error between the

triangle count of an individual random graph, R and the actual number of triangles in

the fixed graph G. Among small random graphs the triangle counts vary dramatically,

so this value is often high.

• Deg%:

Deg% =

√∑n
j (d̂j(G)− d̂j(R))2

n
.

Deg% is a semi-norm, defined as a norm without the ‖x‖ = 0 if and only if x = 0

condition, comparing the degree distribution vectors of G and R. The numerator

of this fraction compares the sorted degree distribution vector of G with the sorted

degree distribution vector of an individual random graph using the common 2-norm.

We found that if the vectors are compared using only the 2-norm, the norm values vary

too much for meaningful results. By dividing by the number of vertices, we achieve a

more consistent comparison over graphs of different sizes.

• Note: The expectation in Edge% is calculated using the formula in Section 3. Trig%

and Deg% are both random variables, and therefore the values change for every random

graph R. In order to get more precise results, we approximate Trig% and Deg% via a

simulation of 100 trials.

4.1.3 Algorithm: Inputs

• G: the fixed real-world network

• ε: the precision threshold for α and r; to make the algorithm more efficient, we start

testing only the tenth values from 0 to 1 for α and r. In an iterative process, we then

narrow down this interval. ε is the minimum we wish to narrow the interval to (i.e.

for an r or α value to the nearest thousandth, ε = 0.001).
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• MaxEdge%: the maximum relative error between the edge counts of R and G to be

considered successful

• MaxTrig%: the maximum relative error between the number of triangles of R and G

to be considered successful.

• MaxDeg%: the maximum semi-norm value allowed between the degree distribution

vectors of R and G to be considered successful.

• Note: Determining what is a reasonable value for Edge%, Trig%, and Deg% is a topic

discussed more in section 6.2.

4.1.4 Algorithm: Process

The overall idea of this algorithm is to take a systematically chosen collection of the pos-

sible combinations of k, α, and r and test them for success based off our defined criteria.

Throughout the process we narrow the number of parameters we are testing by discarding

the unsuccessful combinations of k, α, and r, keeping only those parameters that meet our

criteria.

Using the formula for the expected number of edges of our combination model we generate

three arrays. Each one of the entries in the three arrays is the expected number of edges for

our combination model given these k, α and r values. Notice that the precision interval of

α and r starts at 0.1, and the three arrays each have a different k value based off the three

possible k values.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(k = 0, α = 0, r = 0) (k = 0, α = 0.1, r = 0) . . . (k = 0, α = 1, r = 0)

(k = 0, α = 0, r = 0.1) (k = 0, α = 0.1, r = 0.1) . . . (k = 0, α = 0, r = 0.1)

...
...

...
. . .

...

(k = 0, α = 0, r = 1) (k = 0, α = 0.1, r = 1) . . . (k = 0, α = 1, r = 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(k = 1, α = 0, r = 0) (k = 1, α = 0.1, r = 0) . . . (k = 1, α = 1, r = 0)

(k = 1, α = 0, r = 0.1) (k = 1, α = 0.1, r = 0.1) . . . (k = 1, α = 0, r = 0.1)

...
...

...
. . .

...

(k = 1, α = 0, r = 1) (k = 1, α = 0.1, r = 1) . . . (k = 1, α = 1, r = 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(k = 2, α = 0, r = 0) (k = 2, α = 0.1, r = 0) . . . (k = 2, α = 1, r = 0)

(k = 2, α = 0, r = 0.1) (k = 2α = 0.1, r = 0.1) . . . (k = 2, α = 0, r = 0.1)

...
...

...
. . .

...

(k = 2, α = 0, r = 1) (k = 2, α = 0.1, r = 1) . . . (k = 2, α = 1, r = 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The expected edge count for each random graph produced with the parameters in an

entry is then compared to e(G). If Edge% ≤ MaxEdge%, then that set of parameters is

saved for the next step. If this condition is not met, then that set of parameters is dismissed.

Once each individual entry of all three matrices is tested, we decrease the precision interval

based off the inputted ε. We will call this intermediate precision interval εr for the r values

and εα for the α values. We now sort through every set of k, r, and α values that met

Edge% ≤ MaxEdge% in order to find the maximum and minimum r and α values. Using εr,

we divide the interval between rmin − εr and rmax + εr in to ten equally spaced values. The

same is done for the α values using εα. The new εr and εα become the interval between these

new r and α values. This process is continued as long as ε ≤ εr and ε ≤ εα. For example,

let’s say we are only concerned with r and not k and α. If r = 0.1 and r = 0.4 both meet

Edge% ≤ MaxEdge% when εr = 0.1, then we would divide the interval from 0 to 0.5 into

10 equal spaced values and the new εr = 0.0556. There are specific steps followed in unique

cases such as when rmax or αmax equal 1 and rmin or αmin equal 0, but overall the process

runs as stated above.

The next step begins by taking the first saved set of k, α, and r of the finest interval

from the previous step. Using these parameters we generate a random graph using our

combination random graph model. We then calculate Δ(R) and compare it to Δ(G) using
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the Trig% measure. Similarly, we calculate Trig% using the associated semi-norm. If both

Deg% ≤ MaxDeg% AND Trig% ≤ Max% are met then that individual trial is deemed a

success and we initialize a counter, C = 1. We repeat this process for this same set of input

parameters 100 times, and for each successful trial increment C by 1. We choose 100 trials

for ease of computation. We then divide the total number of successful trials by the total

number of trials to get the fraction of successful trials. We call this value N . This gives

us a number between 0 and 1 that measures how successful that individual set of input

parameters was at modeling the fixed network G using the defined measures. We repeat this

process for all of the save input parameters, thus getting an N value for each. We know that

N is a random variable; however, we have found through experimentation that they have a

low variance. A specific example is provided in Section 5.

4.1.5 Algorithm: Outputs

We output the α, r, and k that achieved the highest N value. An N value close to one means

that there exists a set of input parameters for our combination model that is relatively similar

to the fixed network G using our defined measures.

A schematic of the whole process can be seen below.
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Figure 5: Our Algorithm

5 Results

5.1 In-Depth: Zachary Karate Club

The Zachary Karate Club graph is a 34-vertex graph that represents the separation of two

karate clubs [18]. In this graph a vertex represents a person and an edge represents two

people knowing each other. Although this graph is small, it provides us with a way to test

our method quickly on a basic social network. Through experimentation, we have found that

the best results are achieved when,

• ε = 0.01: Smaller division intervals do not yield significantly better results.

• MaxEdge% = 0.08: Decreasing the edge percent will decrease the number of combi-

nations sent to the next two steps, but experimentation shows that better results can

be achieved if we keep the edge percent a little bit larger.
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• MaxDeg% = 0.29: 0.29 might seem too high to indicate any type of significant result,

but the larger Deg% value is due to the small size of the graph. As the number of

vertices gets larger, we can decrease this value.

• MaxTrig% = 0.39: Triangle counts vary significantly in small random graphs, so we

had to set the MaxTrig% higher to allow for this variance.

Note: We understand that these values seem arbitrary. We could easily set each measure high

and achieve “successful” results. However, we found through experimentation over several

different input parameters that these input parameters achieve the best results. That is they

achieve the random graph that most closely relates to the fixed real-world network. Further

justification can be found at the end of Section 6.

After running our algorithm with these inputs, we maintained consistent outputs over

several trials. The ideal R found had these parameters:

• N = 0.75 with σ2 = 0.0012

• r = 0.0104 with σ2 = 1.1489e− 4

• k = 1

• α = 0.7496 with σ2 = 5.9009e− 5

Note: These parameters are the average values produced after running the algorithm 100

times for the network, and σ2 represents the variance of the values over the simulation.

Zachary’s Karate network is a small network, so the fact that we were able to model it

so closely with random graphs validates the idea behind our algorithm. Our method was

able to produce a set of random graph parameters that meet the specified measures 75% of

the time. Additionally because our process uses random graphs to model fixed networks,

we now have multiple graphs that can model Zachary’s Karate network. The next several

figures demonstrate this fact.
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(a) Zachary’s Karate Club Graph (b) Zachary’s Karate Club Histogram

Figure 6: Zachary’s Karate Club

(a) R Graph 1 (b) R Histogram 1

Figure 7: Random Graph 1 Representation of Karate Club Network

(a) R Graph 2 (b) R Histogram 2

Figure 8: Random Graph 2 Representation of Karate Club Network
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(a) R Graph 3 (b) R Histogram 3

Figure 9: Random Graph 3 Representation of Karate Club Network

5.2 Comparison To A Library Of Graphs

Despite positive results with Zachary’s Karate Club network, our algorithm is worth very

little if it cannot produce positive results over a larger library of graphs. In order to further

our study, we ran our algorithm on an additional seven fixed networks varying in size from

62 to 126 vertices. The results can be found in the table below.

Network Size MaxDeg% MaxTrig% N k r α Source
Dolphins n = 62 0.26 0.35 0.76 1 0.1366 0.0878 [13]
France High School n = 126 0.28 0.36 0.93 1 0.0329 1.0000 [8]
Hamburg Terrorist n = 77 0.30 0.90 0.26 2 0.0165 0.5463 [2]
Les Miserables n = 77 0.24 0.62 0.77 0 0.0658 1.0000 [11]
Madrid Train n = 64 0.21 0.62 0.74 0 0.0782 0.9753 [10]
911 Terrorist n = 62 0.25 0.57 0.78 0 0.0988 0.7942 [12]
Star Wars n = 110 0.23 0.50 0.73 1 0.0165 0.9012 [9]

Table 1: Results From Our Library Of Tested Graphs

We understand that some of the MaxDeg% values and MaxTrig% values seem very high.

However, we justify these inputs in Section 6. The table provides valuable results because it

demonstrates that our process is successful over several graphs. With the exception of the

Hamburg Terrorist network, all of the graphs had relatively high N values.
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6 Proof of Concept

We have shown through experimentation that our algorithm is capable of producing random

graphs that meet our measures of success, but it is important now to justify why we chose

these measures and their associated max values. In this section we will show that under

mild assumptions, the geometric model will almost certainly have more triangles than the

Gw model for a constant w. In other words, given a typical graph determined by the

geometric model the algorithm from Section 4 will almost certainly distinguish it from a

random graph determined by the Gw model with constant w.

6.1 Triangle Count

We propose that the triangle count is a necessary test for determining the best parameters

for our model because it helps distinguish between the random edges found in the Gw model

and the edges determined by proximity found in the geometric model. We suggest that the

geometric model will produce more triangles than the Gw model. This is a very significant

hypothesis, but can be proven rather quickly under certain assumptions. First, we assume

that the Gw model has a constant w vector, which is the traditional Gn,p or Erdös-Renyi

model. We must first prove the expected edge count and expected triangle counts for each

of these models before we can prove that the geometric model will produce more triangles

than the Gn,p model.

Theorem 6.1. For fixed p, the expected number of edges for a Gn,p is as follows:

E{e(R)} = p

(
n

2

)
,

where p is the inputted probability of an edge between two vertices. For sufficiently large n,



28

the expected edge count can be approximated to be pn2

2
. That is,

lim
n→∞

E{e(R)}
pn2

2

= 1.

Proof. Given two vertices, u and v, in the Gn,p graph define,

Ωu,v =

⎧⎪⎪⎨
⎪⎪⎩
1 if edge between u and v

0 if no edge between u and v

,

Then, it follows that

e(Ri) =
∑
{u,v}

Ωu,v

where e(Ri) is the is the number of edges for each random graph and {u, v} are all not

ordered pairs of u and v. Therefore,

E{e(R)} = E

[ ∑
{u,v}

Ωu,v

]
.

By the linearity of expectation,

E{e(R)} =
∑
{u,v}

E[Ωu,v].

By definition of p,

E{e(R)} =
∑
{u,v}

p.

Since there are
(
n
2

)
pairs of edges,

E{e(R)} = p

(
n

2

)
.



29

With sufficiently large n,

E{e(R)} = p

(
n

2

)
=

pn(n− 1)

2
≈ pn2

2
.

Theorem 6.2. For sufficiently small r, the expected number of edges for a random graph

produced using the Gn,r model is as follows:

E{e(R)} ≈ πr2
(
n

2

)
.

With sufficiently large n, the expected edge count can be approximated further as πr2n2

2
.

Proof. In Section 3 we proved that

P (u ∼ v) ≈ πr2.

With the probability of an edge determined, the proof follows the same argument as the

proof for Theorem 6.1 by replacing p with πr2. Thus,

E{e(R)} ≈ πr2
(
n

2

)

With sufficiently large n, and sufficiently small r,

E{e(R)} ≈ πr2
(
n

2

)
=

πr2n(n− 1)

2
≈ πr2n2

2
.

Theorem 6.3. With fixed p, the expected of triangles in the Gn,p is as follows:

E{Δ(R)} = p3
(
n

3

)
.
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With sufficiently large n this value can be approximated to p3n3

6
.

Proof. Define,

Ψu,v,w =

⎧⎪⎪⎨
⎪⎪⎩
1 if triangle between u, v, and w

0 if no triangle between u, v, and w

,

where u, v, and w are arbitrary vertices in the Gn,p graph. Then, it follows that

Δ(R) =
∑

{u,v,w}
Ψu,v,w.

Where Δ(R) is the number of triangles in a random graph, and {u, v, w} is the number of

unordered trios of u, v, and w. Therefore,

E{Δ(R)} = E

[ ∑
{u,v,w}

Ψu,v,w

]
.

By the linearity of expectation,

E{Δ(R)} =
∑

{u,v,w}
E[Ψu,v,w].

For the three vertices, u, v, w, we know there are
(
3
2

)
or 3 independent pairs of vertices. By

definition, the probability that an edge forms between any of those pairs is p. Therefore, the

probability that a triangle forms between u, v, and w is p3. Hence,

E{Δ(R)} =
∑

{u,v,w}
E[Ψu,v,w] =

∑
trios(u,v,w)

p3.

Since there are
(
n
3

)
possible trios of vertices in the Gn,p graph,

E{Δ(R)} = p3
(
n

3

)
.
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Thus with sufficiently large n,

E{Δ(R)} = p3
(
n

3

)
=

p3n(n− 1)(n− 2)

6
=

p3(n3 − 3n+ 2n)

6
≈ p3n3

6
.

Theorem 6.4. For fixed r ≤ 1
2
and sufficiently large n in the Gn,r model E{Δ(R)} obeys

(πr4n3

6

)
γ ≤ E{Δ(R)} ≤

(πr4n3

6

)
π,

where γ = 2π
3
−

√
3
2

≈ 1.22837.

Proof. We will begin by proving the lower bound. Under the assumption of the unit square,

we know that given a random vertex, u in the Gn,r model the probability of another vertex,

v landing within the radius, r, of u is πr2. Note that if a third vertex, w falls within both the

radius of u and v, then a triangle will form. Therefore, to find a maximum lower bound we

have to determine the location of v within the radius of u that results in the least amount of

overlap between the two circles with equal radius. This occurs when v lands exactly distance

r away from u. See the below figure.

Figure 10: Geometric Lower Bound Triangle Count Area Representation
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Based off the formula for the area of a circle segment,

A =
r2

2
(θ − sin θ), [17]

We get that the area for the overlap of the two circles is 2(r
2γ
2
) = r2γ, where γ = 2π

3
−

√
3
2
.

We know already that the probability of an edge forming between two vertices in a geometric

graph is πr2. This is due to the fact that the area of the unit square is 1, and therefore, the

probability that a point falls within a certain area is just that area. Hence, the probability

that w lands within the shaded area in the above figure is r2γ. Thus, the probability of all

three vertices forming a triangle is (r2γ)(πr2) = r4πγ. If we replace the probability of a

triangle for Gn,p, p
3, found in the proof of Theorem 6.3 with r4πγ, the lower bound for the

expected number of triangles in the geometric model is

πr4γ

(
n

3

)
=

πr4γn(n− 1)(n− 2)

6
=

πr4γ(n3 − 3n+ 2n)

6
≈

(πr4n3

6

)
γ.

for sufficiently large n.

Similarly, the greatest possible overlap between the circles of u and v occurs when they

land exactly on top of one another. If this occurs then the area w must fall within is simply

πr2. Thus, the expected number of triangles becomes

(πr2)2
(
n

3

)
=

π2r4n(n− 1)(n− 2)

6
≈

(πr4n3

6

)
π,

with sufficiently large n.

Therefore,

πr4γn3

6
≤ E{Δ(R)} ≤ π2r4n3

6
,

where γ = 2π
3
−

√
3
2
.

To prove that for large n the geometric model has more triangles than the Gn,p model

is difficult without certain assumptions. Mainly, since the focus of our test is to distinguish
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how much each model contributes to the make up of the desired graph, we have to compare

the triangle counts of geometric and Gn,p with equal E{e(R)}. This can be achieved by

taking p = πr2. Additionally, because the expected number of triangles for the geometric

model is a range, we can only prove that the Geometric model has more triangles than the

Gn,p model for particular r values.

Theorem 6.5. Given p = πr2 and a fixed r ≤
√

2π
3
−

√
3

2

π
, the geometric model will asymp-

totically almost surely produce more triangles than the Gn,p model for a sufficiently large

n.

Proof. In order to prove this theorem, we must first prove that the expected number of

triangles for Gn,p is less than the lower bound of the expected number of triangles for the

geometric model. Then we must prove that this holds asymptotically almost surely. Assume,

r ≤
√

2π
3
−

√
3
2

π2
=

√
2π
3
−

√
3
2

π
.

Then,

π2r2 ≤ 2π

3
−

√
3

2
.

Since γ = 2π
3
−

√
3
2
,

π2r2 ≤ γ.

Taking r to be fixed, it follows that

π2r2
πr4n3

6
≤ γ

πr4n3

6
.

Rearranging we get,

(πr2)3n3

6
≤ πr4γn3

6
.
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Therefore by applying Theorems 6.3 and 6.4,

E{Δ(R)Gn,p} = p3
(
n

3

)
≈ p3n3

6
=

(πr2)3n3

6
≤ (r2γ)(πr2)

(
n

3

)
=

πr4γn(n− 1)(n− 2)

6
≈ πr4γn3

6
≤ E{Δ(R)Gn,r},

where γ = 2π
3
−

√
3
2
.

Thus, the Geometric model will produce more triangles than the Gn,p model while,

r ≤
√

2π
3
−

√
3
2

π2
=

√
2π
3
−

√
3
2

π
≈ 0.352789.

In order to show that this asymptotically almost surely holds, Alon-Spencer tell us it is

sufficient to prove that [1]

Var{Δ(R)}
E{Δ(R)}2 → 0 as n → ∞

for both the Gn,p and geometric models. By definition of variance,

Var{Δ(R)} = E{Δ(R)2} − E{Δ(R)}2.

Define,

Ψu,v,w =

⎧⎪⎪⎨
⎪⎪⎩
1 if triangle between u, v, and w

0 if no triangle between u, v, and w

,

where u, v, and w are arbitrary vertices in the random graph R. Let S and T be two

arbitrary unordered trios of vertices in the random graph R. Then,

Var{Δ(R)} = E

(∑
S

ΨS

∑
T

ΨT

)
− E

(∑
S

ΨS

)
E

(∑
T

ΨT

)
.
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By combing the first two sums,

Var{Δ(R)} = E

(∑
S,T

ΨSΨT

)
− E

(∑
S

ΨS

)
E

(∑
T

ΨT

)
.

By linearity of expectation,

Var{Δ(R)} =
∑
S,T

E{ΨSΨT} −
∑
S

E{ΨS}
∑
T

E{ΨT}.

By summing over all S and T we get,

Var{Δ(R)} =
∑
S,T

(E{ΨSΨT} − E{ΨS}E{ΨT}) .

Specifically,

Var{Δ(R)} =
∑
S,T
S=T

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=2

(E{ΨSΨT} − E{ΨS}E{ΨT})

+
∑
S,T

|S∩T |=1

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=0

(E{ΨSΨT} − E{ΨS}E{ΨT}) .

In the above equation, |S∩T | = 2 represents S and T overlapping by two vertices. Likewise,

|S ∩ T | = 1 represents S and T overlapping by one vertex. Now we must prove

Var{Δ(R)}
E{Δ(R)}2 → 0 as n → ∞

for both the Gn,p and geometric model.

We will begin with the Gn,p model. In the case of the Gn,p model, we know by the

definition of p and by the proof for Theorem 6.3 that E{ΨS} = p3 and E{ΨT} = p3.

Likewise if |S ∩ T | = 0 or if |S ∩ T | = 1, E{ΨSΨT} = (p3)(p3) = p6, since in each of these

cases six edges are being formed with probability p. Therefore the variance for the Gn,p
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model becomes

Var{Δ(R)} =
∑
S,T
S=T

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=2

(E{ΨSΨT} − E{ΨS}E{ΨT}) .

If S = T , then E{ΨSΨT} = E{ΨS} = p3. Similarly if |S ∩T | = 2, then E{ΨSΨT} = p5 since

there are only five edges each determined with probability p. Therefore,

Var{Δ(R)} =
∑
S,T
S=T

(
p3 − p6

)
+

∑
S,T

|S∩T |=2

(
p5 − p6

)
.

Since there are
(
n
3

)
cases where S = T and 3

(
n
3

)
(n− 3) cases where |S ∩ T | = 2,

Var{Δ(R)} =

(
n

3

)(
p3 − p6

)
+ 3

(
n

3

)
(n− 3)

(
p5 − p6

)
.

Therefore,

Var{Δ(R)}
E{Δ(R)}2 =

(
n
3

)
(p3 − p6) + 3

(
n
3

)
(n− 3) (p5 − p6)(

n
3

)2
p6

=
(p3 − p6) + (3n− 9) (p5 − p6)(

n
3

)
p6

.

Since p = πr2 and r ≤
√

2π
3
−

√
3

2

π
, we are only concerned with the n values in this fraction.

Thus,

Var{Δ(R)}
E{Δ(R)}2 ≈ c

n2
,

where c is a constant determined by the values of p. It follows that

Var{Δ(R)}
E{Δ(R)}2 → 0 as n → ∞

holds for the Gn,p model.

We now must prove

Var{Δ(R)}
E{Δ(R)}2 → 0 as n → ∞
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holds for the geometric model. Following a similar process, we begin with calculating the

variance. We know

Var{Δ(R)} =
∑
S,T
S=T

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=2

(E{ΨSΨT} − E{ΨS}E{ΨT})

+
∑
S,T

S=T\{u,v}

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=0

(E{ΨSΨT} − E{ΨS}E{ΨT}) .

In the proof for Theorem 6.4, we showed that the lower bound for the probability of a triangle

in the geometric model is πr4γ. Therefore, similarly to the Gn,p model, in the |S ∩ T | = 0

and |S ∩ T | = 1 cases

(πr4γ)(πr4γ) = π2r8γ2 ≤ E{ΨSΨT} = E{ΨS}E{ΨT} ≤ (πr2)4 = π4r8.

Therefore for the geometric model, the |S ∩ T | = 0 and |S ∩ T | = 1 cases equal zero. Since

we are dealing with estimates, we must find the upper-bound in the geometric model for

Var{Δ(R)}
E{Δ(R)}2 .

Therefore, we will find the upper-bound for the numerator and the lower-bound for the

denominator. We determined

Var{Δ(R)} =
∑
S,T
S=T

(E{ΨSΨT} − E{ΨS}E{ΨT}) +
∑
S,T

|S∩T |=2

(E{ΨSΨT} − E{ΨS}E{ΨT}) .

If S = T , then πr4γ ≤ E{ΨSΨT} = E{ΨS} ≤ π2r4. Similarly if |S ∩ T | = 2, E{ΨSΨT} is

at its maximum when, like the upper-bound in Theorem 6.4, two points fall on top of each

other, except now two points must fall in that area instead of one. Therefore in this case,

E{ΨSΨT} ≤ (πr2)(r2π)2 = πr6π2 = π3r6. Additionally, we must find the lower-bound for

E{ΨS}E{ΨT}, since it is being subtracted. This follows from Theorem 6.4, E{ΨS}E{ΨT} ≥
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(πr4γ)(πr4γ) = π2r8γ2. Following the argument made for the Gn,p model,

Var{Δ(R)} ≤
(
n

3

)(
π2r4 − π2r8γ2

)
+ 3

(
n

3

)
(n− 3)

(
π3r6 − π2r8γ2

)
.

Therefore,

Var{Δ(R)}
E{Δ(R)}2 ≤

(
n
3

)
(π2r4 − π2r8γ2) + 3

(
n
3

)
(n− 3) (π3r6 − π2r8γ2)(

n
3

)2
π2r8γ2

=
(π2r4 − π2r8γ2) + (3n− 9) (π3r6 − π2r8γ2)(

n
3

)
π2r8γ2

.

Since π and γ are constants and r ≤
√

2π
3
−

√
3

2

π
, we can approximate this fraction the same

way we did for Gn,p. Thus,

Var{Δ(R)}
E{Δ(R)}2 ≈ c

n2
,

where c is a constant determined by r. It follows that

Var{Δ(R)}
E{Δ(R)}2 → 0 as n → ∞

holds for the geometric model. Thus, the Geometric model will asymptotically almost surely

produce more triangles than the Gn,p model while,

r ≤
√

2π
3
−

√
3
2

π2
=

√
2π
3
−

√
3
2

π
≈ 0.352789.

Note: Although we proved this theorem for a fixed r, following the same argument we can

prove it for p = πr2 = n−1+ε, where ε > 0. This is important as it shows that almost always

there is a difference in the triangle counts of the geometric and Gn,p models, validating us

using it as a measure to determine the contributions of each model.
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6.2 Basis for Measures

It is difficult to determine whether a random graph accurately represents a fixed network

because variance is inherit in random graph models even between random graphs generated

from the same set of input parameters. Consequently, in order to test how successful our

algorithm is in producing a random graph that accurately represents a fixed network, we

will compare multiple random graphs generated from the same input parameters using Deg%

and Trig%.

As stated in section 3.1 and 3.2, our semi-norm for determining the closeness of the degree

distributions is

Deg% =

√∑n
j (d̂j(G)− d̂j(R))2

n
.

and our formula for determining relative error in the triangle counts is

Trig% =
|Δ(R)−Δ(G)|

Δ(G)
.

In Section 5, we tested our algorithm over several different graphs and achieved success

by the inputted measures. However, it can be argued that our values for Deg% and Trig%

were set high enough to guarantee success. This is a valid argument as a relative error of

0.50 is very poor. However despite this, we believe our method still has weight. The reason

for this confidence lies in the fact that within random graphs, especially random graphs with

small n values (most of the ones we tested), the variance for triangle counts is high. That is,

if we were to compare two random graphs generated from the same input parameters over

several trials, the Trig% values would be high.

In addition to the high variance in triangle counts, it can be very difficult to get sig-

nificant results on both the Deg% measure and Trig% measure. The Gw works very well

at modeling particular degree distributions because the distribution vector can be used as

w. Additionally, the geometric model can reproduce triangle counts because its edges are
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based off proximity. It is very difficult to achieve any success in both of these categories.

The series of figures below helps demonstrate this point. The “R v R” curve represents the

comparison of two random graphs with the same input parameters over 1000 trials using

both Deg% and Trig%. The k, r, and α values used were from the table in Section 5 for each

associated fixed network. The “R v G” curve represents the random graph compared to the

fixed network using the two measures over 1000 trials. Finally, The “ModR v G” represents

the comparison of the random graph with a 10% decrease in both r and α and the fixed

graph over 1000 trials. All of these comparisons were plotted using a histogram with either

Deg% or Trig% values on the x-axis and counts on the y-axis.

(a) Deg% Comparison (b) Trig% Comparison

Figure 11: Zachary Karate Club Network

(a) Deg% Comparison (b) Trig% Comparison

Figure 12: Dolphin Network
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(a) Deg% Comparison (b) Trig% Comparison

Figure 13: France High School Network

(a) Deg% Comparison (b) Trig% Comparison

Figure 14: Les Miserables Network

(a) Deg% Comparison (b) Trig% Comparison

Figure 15: Madrid Train Network
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(a) Deg% Comparison (b) Trig% Comparison

Figure 16: 9/11 Terrorist Network

(a) Deg% Comparison (b) Trig% Comparison

Figure 17: Star Wars Network

The high variance in both Deg% and Trig% is demonstrated well in the figures above.

Obviously, our model does not work perfectly. However, although it might not seem signifi-

cant, the fact that the majority of the “R v G” values fall someplace on the “R v R” graph

is difficult to achieve, even if it is the far right side of the graph. Though it is not probable,

this means that it falls within the realm of possibility that the fixed network was generated

by the random graph. The “ModR v G” curve helps demonstrate the significance of this

feat as even a slight change in the input parameters can shift the curve farther to the right.

7 Conclusion and Future Directions

Broido and Clauset showed us that in actuality very few real-world networks are based

solely on exponential models. However, our method of using a combination of random graph
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models to represent real-world networks shows promise. By broadening our scope from one

type of model to three, we were able to show consistent results using a relatively simple

process. Despite this fact, there are a couple of drawbacks to our process.

First, though our model has been more successful than previous attempts, it could do a

lot better at modeling triangle counts in real-world networks. Additionally, our algorithm

has difficulty creating distinct hubs in graphs. For example, Zachary’s Karate Club network

appears to have two hubs, but despite relatively consistent histogram results, we were not

able to achieve as distinct of hubs in our models.

So where do we go from here? The never ending problem with attempting to model a

fixed network is that it will never be perfect. However, there are a couple of things that we

are working on to make it better. Currently, the algorithm only tests k ∈ {0, 1, 2}. The

reason behind this choice was simply one of speed and efficiency. However, we believe that

some of these models, like the Hamburg Terrorist network, can be modeled more accurately

with higher k values, so we are currently working to allow for higher k values without

decreasing efficiency. In addition to increasing the k values tested, we would like to work

on a way to more accurately create hubs in the random networks. This is an issue that

we have invested time into with limited results. The issue lies in the fact that in order to

create a specific number of hubs in our random networks, we have to change the random

graphs we are currently using, meaning at least one of the three models, Gw, geometric, or

preferential attachment, would have to be modified. We want to avoid altering the model

too much though because then our methods for measuring the success of the models change.

In order to achieve the most success with the least modification, we are currently working

on modifying the preferential attachment model. Because preferential attachment graphs

often have one or two vertices with high degree, we believe it is the most promising model

to produce hubs. Currently with our random combination model, if a fixed network has n

vertices and h number of hubs, the preferential attachment portion of that graph is generated

over n vertices with a k ∈ {0, 1, 2}. We believe that our random combination model would
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be more likely to produce h hubs if the preferential attachment portion of the model had

h base preferential attachment graphs each with approximately n/h vertices. This would

allow for a vertex of high degree in each of the h sub-graphs. However, in order for this

modification of the preferential attachment portion of the combination to factor into the

algorithm, we have to increase the k values. Otherwise, the preferential attachment portion

will be overpowered by the other graph types in the random combination model. However

as stated earlier, perfection is impossible and every added parameter to the model brings

an increase in complexity. Because of this, we believe that our current algorithm provides a

good balance between simplicity and accuracy.



45

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method: Third Edition. Wiley, 2008.

[2] S. Atran. John jay & artis transnational terrorism database. Technical report, Technical

Report, John Jay College of Criminal Justice, 2009.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. science,

286(5439):509–512, 1999.

[4] V. Belevitch. On the statistical laws of linguistic distributions. In Annales de la Societe

Scientifique de Bruxelles, volume 73, pages 301–326, 1959.

[5] A. D. Broido and A. Clauset. Scale-free networks are rare. arXiv preprint

arXiv:1801.03400, 2018.

[6] F. Chung and L. Lu. Complex Graphs and Networks. Number 107. American Mathe-

matical Soc., 2006.

[7] R. Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2006.

[8] J. Fournet and A. Barrat. Contact patterns among high school students. PloS one,

9(9):e107878, 2014.

[9] E. Gabasova. The star wars social network. Evelina Gabasova’s Blog. Data available

at: https://github. com/evelinag/StarWars-social-network/tree/master/networks, 2015.

[10] B. Hayes. Connecting the dots. American Scientist, 94(5):400–404, 2006.

[11] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing. AcM

Press New York, 1993.

[12] V. E. Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–52, 2002.



46

[13] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson.

The bottlenose dolphin community of doubtful sound features a large proportion of

long-lasting associations. Behavioral Ecology and Sociobiology, 54(4):396–405, 2003.

[14] M. Penrose et al. Random Geometric Graphs. Number 5. Oxford University Press, 2003.

[15] E. Ravasz and A.-L. Barabási. Hierarchical organization in complex networks. Physical

Review E, 67(2):26–112, 2003.

[16] A. Tucker. Applied Combinatorics: Sixth Edition. Wiley, 2012.

[17] E. W. Weisstein. Circular segment. Visited on 04/17/19.

[18] W. W. Zachary. An information flow model for conflict and fission in small groups.

Journal of Anthropological Research, 33(4):452–473, 1977.


	Cover
	SF298 Baker
	Baker Final Trident unformatted

